
American Institute of Aeronautics and Astronautics
1

                                         AIAA-99-3276

AN EXPERIMENT IN AUTOMATED, SCIENTIFIC-CODE SEMANTIC ANALYSIS

Mark E. M. Stewart*
Scott Townsend*

Dynacs Engineering, Inc.
2001 Aerospace Parkway
 Brook Park, OH 44142

Abstract

This paper concerns a procedure that analyzes aspects
of the meaning or semantics of scientific and engineer-
ing code.  This procedure involves taking a user's
existing code, adding semantic declarations for some
primitive variables, and parsing this annotated code
using multiple, independent expert parsers.  These
semantic parsers are designed to recognize formulae in
different disciplines including physics, numerical
methods, mathematics, and geometry. The parsers will
automatically recognize and document some static,
semantic concepts and help locate some program
semantic errors.  Results are shown for two intensively
studied codes and two blind test cases.  These tech-
niques may apply to a wider range of scientific codes.
If so, the techniques could reduce the time, risk, and
effort required to develop and modify scientific codes.

Introduction

From a syntactic or programming language perspective,
scientific programs are uses of a programming language
that specify how numbers are to be manipulated.
However, from the perspective of semantics or mean-
ing, scientific programs involve an organization of
physical and mathematical equations and concepts. The
programs from a wide range of scientific and engineer-
ing fields use and reuse these fundamental concepts in
different combinations.  This paper explains an experi-
ment in representing, recognizing, and checking these
fundamental scientific semantics..

What motivates this experiment is that semantics is a
central issue in the development and modification of
scientific code.  Reducing the errors in a scientific or
engineering program until its results are trusted involves
ensuring the program’s semantics are correct.  Further,

                                                          
.* Senior Engineer, Aeromechanics Department
Copyright   1999 by the American Institute of Aeronautics and
Astronautics, Inc. All rights reserved.

this development process is expensive and time con-
suming because it is primarily a manual task.  The
existing software development tools (lint, ftnchek,
make, dbx, SCCS, call tree graphs, memory leak
testing) do not fully alleviate this problem and deal only
superficially with semantics.  Further, verification
techniques (comparison with available analytic and
experimental results; verification of convergence and
order of accuracy) can only detect the presence of an
error; finding this error often leads to a time-consuming
manual search. For example, the second difference code
(1) contains a geometrical error in the grid index I,
which is exceedingly hard to find manually.

      FS(I,J) = DW(I+2,J) – 2.*DW(I,J) + DW(I-1,J)   (1)

However, it can be found automatically with this
semantic analysis procedure.

Semantics’ role in program modification is similar to its
role in code development.  Understanding another
programmer’s code is usually frustrating and time
consuming, and to understand code well enough to
modify it confidently requires a large time investment.
Suggestive variable names, program comments,
program manuals, and communications with the
developer are means to convey an understanding of a
code, but these methods are often neither adequate nor
efficient.  This semantic analysis procedure can repre-
sent and recognize important code details.

Modern programming practice attempts to reduce the
number of code development errors and to ease code
modification.  Software reuse (through subroutine
libraries) and object-oriented programming1 also target
these problems, but these techniques cannot help when
modifications and custom software are required.
Recently there has been work in high-level specification
languages2 where a symbolic manipulation program
(Maple, Mathematica) is used to write subroutines or
even programs.  Yet another attempt to solve these
software problems is the field of formal methods3 that



American Institute of Aeronautics and Astronautics
2

uses logic, set theory, functions, and algebra to develop
mathematical models for systems and to rigorously
prove code properties.

Part of the problem with these tools is that it is difficult
to represent knowledge.  Using the classical notation
and methods of mathematics and physics simplifies
knowledge representation in this work, yet representa-
tions (or ontologies) have been developed in other
modern fields. Using an ontology for engineering
knowledge representation and tool integration has been
studied4.  In natural language understanding, parsing
has been combined with an ontology to recognize and
represent the semantics of written text5.  The use of both
parsing and an ontology makes the natural language
work similar to the current experiment with scientific
programming.

The limitations of these existing tools and approaches
and the cost of manual semantic analysis are the
motivations for the current experiment. As a comple-
mentary tool, automated semantic analysis6 could
reduce the time, risk, and effort during original code
development, subsequent maintenance, second party
modification, and reverse engineering of undocumented
code.

This paper follows experimental report form with a
thesis, procedure, results, discussion, and conclusion.

Thesis

The thesis of this semantic analysis experiment is that
fundamental physical and mathematical formulae and
concepts are reused and reorganized in scientific and
engineering codes.  Further, a procedure, which com-
bines a parser7,8,9 with other methods, can recognize
each reuse.

If this experiment in automated analysis succeeds, the
resulting tool would help locate errors during code
development and document code for modification.

Procedure

In outline, the current procedure for testing this thesis
consists of four key stages.  First, the user adds seman-
tic declarations to his/her existing program (2).

                 C?   MA == mass
                 C?   ACC == acceleration
                        FF = MA*ACC                                   (2)

Distinguished by “C?” these declarations provide the
mathematical or physical identity of primitive variables
in the user’s program.  Second, the procedure syntacti-
cally parses the user’s program into a data structure
representation.  Third, a translation scheme converts
statements in the user’s FORTRAN program into
statements in different context languages.  For example,
the FORTRAN expression in (2) is converted to the
physical dimensions expression (3) and the physical
quantity expression (4).

                           (M) * ( L*T**-2 )                            (3)
                           mass * acceleration                          (4)

These context languages reflect the different aspects of
program statements that scientists and engineers
analyze.  Aspects include mathematical or physical
quantity, geometrical (grid) location, geometrical entity,
vector entity, dimensions, and units.  Fourth, independ-
ent expert parsers examine the translated phrases and
attempt to recognize formulae from their area of
expertise. For example, a dynamics expert parser would
include the rule (5), be able to recognize the phrase (4)
as “force” due to Newton’s law, and assign this result to
FF in (2).

                       force :  mass * acceleration                  (5)

Further, the units expert parser can reduce (3) and
verify units.  The other expert parsers act similarly (see
Table 1).

Analyzed Aspect Parsers Parser
Rules

Fundamental
Equations

Quantity-Math 3 410 49
Quantity-Physical 3 615 94
Value / Interval 2 201 27
Grid Location 4 1648 232
Geometrical Entity 1 441 20
Vector Entity 1 305 11
Non-Dimensional 1 72 5
Dimensions 1 55 10
Units 1 81 19

Table 1: Aspect analyses performed by the semantic
analysis procedure including number of parsers for each
aspect, number of Yacc8 parser rules, and fundamental
equations.  Rule (5) is a fundamental equation; some
equations require several parser rules.



American Institute of Aeronautics and Astronautics
3

When an expert parser recognizes an expression, it
annotates the data structure representation of the user’s
program with the observation.  Other expert parsers can
use this observation to recognize more of the expres-
sion.  Further, the annotated data structure representa-
tion contains all the results of the semantic analysis, and
a graphical user interface (GUI) displays these results as

shown in Figure 1.  The user may point to variables and
expressions in his/her code, and the GUI displays any
semantic interpretation and its derivation.  The GUI
highlights recognized errors, undefined quantities, and
unrecognizable expressions.  Further, the GUI provides
detailed scientific and technical definitions and expla-
nations.                      .

Figure 1: GUI display for the semantic analysis program.  The top window displays a user’s code; variables and
expressions may be selected for explanation.  The middle region explains this selected text.  In this case, the physical
quantity is density, it does not have a grid location, and it has the displayed dimensions, units, and derivation.  The
bottom region displays the semantic dictionary/lexicon.



American Institute of Aeronautics and Astronautics
4

Extended Example of Parsing for Code Recognition
The most important step in the above procedure is the
expert parsers’ analysis.  An example of how parser
rules operate to recognize an expression is instructive.
To determine the meaning of the variable VAR in (6),
the parser sequentially examines the RHS of (6).  When
the parser reads energy<internal> (EI), it anticipates
rule (7d) and the tokens ‘+’ and work.

   C?  P == pressure<static>, RHO == density<static>
   C?  V == speed, EI == energy<internal>
   C
         VAR = EI + P / RHO + 0.5 * V * V                  (6)

When the parser reads pressure<static> (P), it expects
rule (7c) to produce work and the tokens ‘/’ and
density<static> to appear.  When the parser sees all the
tokens of rule (7c), it reduces them to the token work,
and when all the tokens of rule (7d) are present, they are
reduced to the token enthalpy.  The parser anticipates
rule (7f) next.  Similarly, the parser recognizes rules

(7b), (7a), and (7f) to infer that VAR represents
enthalpy<total>.

  speed_squared            :  speed * speed                             (7a)
  energy<kinetic>          :  half * speed_squared                   (b)
  work                            :  pressure<static>/density<static> (c)
  enthalpy                      : energy<internal> + work              (d)
  sound_speed_squared : gamma * work                              (e)
  enthalpy<total>           : enthalpy + energy<kinetic>          (f)

 (These rules have been simplified to intensive quantities.)

The parser rules (7) do not execute sequentially as with
statements in a conventional programming language.
Instead the parser determines if and how the rules
appear in the input.  Parser rules (7) are automatically
converted to a subroutine by the program Yacc8.  Table
2 gives a flavor of the expert parser rules.  Note also
that each step in the recognition process depends on
correctly performing the previous step; an error can
dramatically reduce recognition.

        Mathematical, Numerical                      Physical
                     Quantity                      Quantity

                Grid Location,
             Geometrical Entity

                    q ⇐  q + 0                    p ⇐  F / area                      l ⇐  l1 ± l2

                    q ⇐  q * 1                     F ⇐  m * A                      l ⇐  l1 */ l2

                   0 ⇐  q1 - q2                 W ⇐  F * length                     g ⇐  g1 ± g2

                  ∆q ⇐  q1 - q2                R ⇐  Ru / Mol. wt.                     g ⇐  g1 */ g2

                  2q ⇐  q1 + q2                   R ⇐  Cp  - Cv

              ∆2q ⇐  q - 2q  + q                   Ru ⇐  k * NA

                      Vector
                       Entity

                  Polynomials          Cp ⇐  Σ (Mass Fract.* Cp)                     v ⇐  v1 ± v2

                   q2 ⇐ q * q                     γ ⇐  Cp  / Cv                  v ⇐  v1 */ scalar
                 Σq ⇐ q + q + ...                     w ⇐  p / ρ                surface ⇐  v1 * v2

                ∂q/∂x ⇐  ∆q / ∆x                   c2 ⇐  γ * p / ρ          scalar ⇐  scalar ±*/ scalar
              ∂2q/∂x2 ⇐  ∆2q / ∆2x                         oC ⇐  oK – 273.15            scalar ⇐  Dot Product
           ∂q/∂y ⇐  ∂q/∂x * ∂x/∂y                      oF ⇐  1.8 * oC  + 32
             vol ⇐  length * area                   p / ρ ⇐  R * T

        Non-Dimensionalization,
             Dimensions, Units

           area ⇐  length * length              ∂m/∂t ⇐  ρ * U * A                   D ⇐  D1 ± D2

               Ek ⇐  ½ * m * U2                   D ⇐  D1 */ D2                Number Value,
               Number Interval                    ek ⇐  ½ * U2                   D ⇐  ftn( D1 )
                    n ⇐  n1 ± n2              ei ⇐  1/(γ-1) * p / ρ                    d ⇐  d1 ± d2

                   n ⇐  n1 */ n2                     h ⇐  ei + w                    d ⇐  d1 */ d2

                   n ⇐  n1 ** n2                     ho ⇐  h + ek                    d ⇐  ftn( d1 )
                   n ⇐   ftn(n1)                      ν ⇐  µ / ρ                    u ⇐  u1 ± u2

                    r ⇐  r1 ± r2       Reynolds ⇐  ρ * U * length/µ                    u ⇐  u1 */ u2

                    r ⇐  r1 */ r2            u*∂u/∂x- (1/ρ)*∂p/∂x                    u ⇐  ftn( u1 )
                    q = Math/Numerical Quantity;     l = Grid Location;     g = Geometrical Entity;      v = Vector Entity;
               n = Number Value;     r = Number Interval;    D = Non-Dimensionalization;    d = Dimensions;    u = Units

Table 2: A sampling of expert parser rules used in the semantic analysis method.  Many rules are condensed. Due to
decomposition a single operation may involve multiple independent aspects (units, grid location and quantity for
x_coordinate – x_coordinate), and several rules from this table can apply to it.



American Institute of Aeronautics and Astronautics
5

Properties of the Procedure
Several additional features and properties of this
automated semantic analysis procedure deserve men-
tion: semantic declaration terms, mathematical rules, the
generality of recognition, the nature of error detection,
and the presence of ambiguities.

   Terms in Semantic Declarations
The code fragment (6) includes four semantic declara-
tions.  The six defining terms pressure, static, density,
speed, energy, and internal are from a lexicon of terms
(currently 380), and they closely resemble English
technical terms.  Further, the knowledge representation
uses adjective terms, such as static in pressure<static>,
to modify terms and reduce their number.  Multiple
adjectives are possible.  For example, the term deriva-
tive takes two adjectives, derivative<pressure time>, to
represent ∂p/∂t.

   Mathematical Rules
The physical rules (7) differ from mathematical rules,
since mathematical rules apply to any mathematical or
physical quantity.  For example, to detect a discrete
difference, ∆q, the pattern is variable−variable where
variable is any quantity.  This pattern matches exces-
sively, and when it does match, additional code com-
pares the aspects of the two variables.  If the variables
are identical, then the expression is zero; if the variables
differ in location only, then the expression is a discrete
difference, ∆q; if the variables differ in geometrical
entity in a specific way, then the expression is a second
order Jacobian.

  Non-General Derivation
The general derivation of equations is dependent upon
the fundamental physical equations, the algebraic
properties of mathematical expressions (Commutative,
Distributive and Associative laws), and the transforma-
tion laws of equations (equation substitution and
algebraic solution).  However, this general derivation of
equations is a non-trivial and potentially expensive
search.

In comparison, the rules within a Yacc8 parser (or more
formally a LALR(1)7,8 grammar) are a specialized type
of rewrite rule, referred to here as reduction substitution
rules since they rewrite and reduce one or more input
tokens to a single token.  The rule (8a) substitutes one
token (LHS) for two tokens (RHS).

 enthalpy<total>                   : enthalpy + energy<kinetic>(8a)
 enthalpy + energy<kinetic>: enthalpy<total>                    (b)
 energy<kinetic> + enthalpy: enthalpy + energy<kinetic> (c)

However, the substitution (8b) and the commutative
transformation (8c) cannot be directly implemented in a
Yacc grammar since they rewrite to more than one
token.

Although parsers allow fast and efficient rule recogni-
tion, the parser rules will allow only a small subset of
the algebraic and equation laws to be implemented.
Consequently, by using only Yacc parsers, it is not
possible to perform general derivations and compare
them with expressions in scientific and engineering
codes.

   Enhanced Recognition
To resolve this recognition problem, the parsers are
supplemented with five methods. The first three of these
methods give a moderate algebraic search.  This
strategy tries to avoid expensive general searches each
time the formula is encountered.  The existing evidence
indicates this is a reasonable choice.

In the first method, the experts are applied incremen-
tally to expression components. In (9) the sub-
expressions p/ρ, u2, and ½u2 are separately referred to
each of the expert parsers for analysis.

                                  p/ρ  + ½ u2                                (9)

Second, between calls to the expert parsers, methods are
applied that commute, associate, and distribute (and
inverse distribute) the expression.

Third, some limited substitutions can be performed
between referrals to the expert parsers. Examples
include, 2ai ⇐  ai+1 + ai-1 or the normalizing transforma-
tion u2 ⇐  u*u.

A fourth method of enhancing recognition is decompo-
sition of semantic knowledge.  For example by analyz-
ing a quantity’s axis, the vector entity expert parser can
recognize a dot product (10) almost independently of
the physical quantity, u.  (Note: verifying that ux

2, uy
2,

and uz
2 are otherwise identical is the further necessary

test.)

                             ux
2  +  uy

2  +  uz
2                           (10)

This near independence of aspects extends to the
analysis of mathematical/physical quantity, number
value, number interval, grid location, geometrical entity,
vector entity, non-dimensionalization, dimensions, and
units.



American Institute of Aeronautics and Astronautics
6

In the fifth method, constants are identified when the
expert parser’s input is prepared.  For example, in (11)
the constant 32 is distinguished from other constants for
the parser analyzing temperature equations.

                       oF = 1.8 * oC + 32                       (11)

The use of 32 in (11) is an example of how this en-
hanced recognition process is context sensitive7, since
in other contexts this constant can have other meanings.

  Error Detection
This semantic analysis procedure detects errors with
direct tests of some code aspects including dimensions,
units, and non-dimensionalization.  For other code
aspects, including mathematical/physical quantity, the
semantic analysis procedure attempts to recognize
formulae.  Unrecognized code may be incorrect or a
correct formula beyond the scope of the stored rules.
For example, the procedure would declare the aerody-
namics equation (12) unrecognized (pressure is incor-
rectly calculated from density, total energy, velocities
and the ratio of specific heats); (12) cannot be declared
in error since it may be an unknown rule.

         P = RHO*(E – ( U*U + V*V ))*(GAM-1)      (12)

However, in cases where multiple conditions must be
satisfied before recognition, the failure of one condition
is evidence of an error.  For example, to recognize a
second-difference, formula and geometrical conditions
must be satisfied; however in (1) the geometrical
condition is not satisfied and an error is suspected.
Although this semantic analysis procedure is not a
direct error tester, by reviewing the analysis, users can
identify errors relatively easily.

   Ambiguities
A further theoretical issue is that ambiguities exist in the
static analysis of scientific code.  The final identity of
the variable P is ambiguous in (13).

                   C?   P == pressure<static>
                   C?   RHO == density<static>
                          CC = GAM * P / RHO                    (13)
                          P = 1

After P is assigned the indistinct value 1, it may still
represent pressure, or it may represent something else
with the constant value 1.  This ambiguity would not
exist if the assignment were P = 3.14 or P = RHO.  The
procedure resolves this ambiguity by assuming no
memory re-use; the new number value is set, and a

warning is generated.  The ambiguity can be resolved if
the user rewrites the code so that P is not re-used.

Another ambiguity can exist when deducing an array’s
layout.  In a static analysis, the indices in array assign-
ment can be under-specified and suggest different array
layouts. In (14), it is not clear if N<3, N>3, or N=3
since the value of N is not known.

                  C?   N == number<species>
                  C?   R == radius
                         DIMENSION A(10)                        (14)
                         A(3) = 0.
                         A(N) =  R

This ambiguity is resolved with semantic declarations
for array structure or by assuming (and noting) a case.

Results

The results take two forms: the recognition of code
semantics and the generality of this recognition capa-
bility.

Recognition of Code Semantics
The results of analyzing two development codes
demonstrate recognition of code semantics.  One
program performs data reduction for experimental data
analysis, and the other is twenty subroutines from the
ALLSPD10 code. ALLSPD is a 3D, implicit, general-
ized curvilinear coordinate code for chemically reacting
flows. In development test cases, the procedure devel-
opers devise and test expert parser rules, and correct
any errors.  Hence these are not blind test cases.

Highlighted in the GUI of Figure 1 is a recognized
expression from the first development code.  Other
recognized formulae include temperature formulae,
viscosity and thermal conductivity calculated from the
power law, Reynolds number, and Prandtl number.
Most of the not-understood code corresponds to
program variables that are defined by function calls and
logical expressions.  The semantic analysis coding
needed for these cases has not yet been developed.

To measure this recognition of code semantics, the
procedure examines each operation, a⊗ b where
⊗∈{ +, −, ∗, /, ∗∗ }, intrinsic function reference, ftn(a),
and array reference, a(i,j,k), in the code.  The recogni-
tion fraction is the fraction of these opera-
tions/references where the mathematical/physical
quantity is understood.  In Figure 2, the recognition
fraction for the first development case is plotted against



American Institute of Aeronautics and Astronautics
7

Figure 2: Graph showing the increase in expression understanding as semantic declarations are added to a data
reduction subroutine.  The subroutine contains 160 operations to understand and approximately 100 lines of code.

an increasing number of semantic declarations.  The
curve is offset from the origin since some trivial
expressions are recognizable without semantic declara-
tions.

Twenty ALLSPD subroutines (5500 FORTRAN
statements) form an additional development case where
the analysis tool achieved an understanding fraction of
0.51 (see Figure 3).  Input and primitive variables were
semantically declared.  The user effort to prepare these
declarations is modest compared to the effort of
syntactically declaring all variables as required by
modern programming practice and some programming
languages.

Generality of Recognition Capability
Blind tests of two codes demonstrate the generality of
this semantic analysis procedure.  These test cases are
the ENG1011 code with 20k lines of FORTRAN code
(loc) and the ADPAC12 code (86k loc).  Both are
explicit, finite-volume fluid dynamics codes.  The
procedure developers examined these test codes to
determine semantic declarations for coordinates and
solution variables.  The semantic analysis program was
not modified to correct errors.

Recognition results for these blind test cases are shown
in Figure 4, and they demonstrate a general semantic
recognition capability.  Of course, these results reflect
the analysis code’s level of development and not the
quality of these blind test cases.  One would expect the
development codes to have a higher recognition fraction
since the procedure developers correct expert parser
errors found during development.  Additional work on
the procedure will improve these preliminary results.

Discussion

This automated semantic analysis procedure has
properties advantageous for analysis of scientific
programming.  First, parsers can recognize mathemati-
cal, physical, and geometrical knowledge in code.
Second, parsers can encapsulate formulae into inde-
pendent modules.  Third, these rules are largely funda-
mental, which increases generality, and they are largely
aspect-independent, which reduces complexity.   The
data structures used to represent the code are effective
and allow manipulations.  Last, the economics of this
procedure appear to be favorable.  In particular, the
number of semantic declarations is reasonable, and the
execution time on a modern workstation is under one
minute per thousand lines of code.



American Institute of Aeronautics and Astronautics
8

Figure 3: Graph showing the increase in expression understanding as semantic declarations are added to twenty
subroutines from the ALLSPD code.  The subroutines contain 5278 non-comment FORTRAN statements and 3431
operations to understand.  Further work will increase the understanding fraction.  The analysis results reflect the
analysis code’s quality and not the quality or ability of the ALLSPD code.

Figure 4: Graph showing the increase in expression understanding as semantic declarations are added to two blind
test cases.  The ADPAC codes contain 86k loc, and the ENG10 code contains 20k loc. The understanding fraction
for development codes is higher than blind test case codes because the procedure developers correct expert parser
errors found during testing.   Further work will increase the understanding fraction.  The analysis results reflect the
analysis code’s quality and not the quality or abilities of the ADPAC or ENG10 codes.



American Institute of Aeronautics and Astronautics
9

Potential Limitations
Despite these advantages, several potential limitations
have been identified and must be monitored as the
procedure develops.  First, the procedure lacks the code
to analyze the following constructions correctly: array
structure, boundary conditions, logical expressions,
subroutine calls and the call tree. As the procedure
develops this infrastructure problem will disappear.
Second, as noted earlier, when attempting to recognize
an expression, this procedure does not perform a
general derivation/search but only a moderate search.
These searches will limit recognition but not exces-
sively.  Third, a stability problem could exist because
errors and omissions in the expert parser rules can
reduce the recognition fraction.  This loss of recognition
occurs because recognition involves long inference
chains that can be broken by an error.  Fourth, although
adding rules requires moderate expertise, the large
number of physical formulae may mean it takes signifi-
cant effort to incorporate these rules into the procedure.
Fifth, the current implementation uses sizeable amounts
of memory, and for big analyses, execution is memory
bound.

Further, to achieve the best results with this procedure
requires a particular style of structured programming.
For example, the real constants in (15) are evaluations
of γ/(γ-1), 2/γ, and (γ-1)/γ for a particular value of the
ratio of specific heats, γ.

  numer=3.8249*(r**1.4771)*(1-r**0.26145)*(1-beta**4)
  denom= (1-r)*(1-(beta**4)*r**1.4771)                           (15)

As numbers they are hard to recognize, and to be
recognized, this code would have to be rewritten.

Conclusions

We spend too much time slaving over our codes,
analyzing details; and this experiment strives to auto-
mate these menial chores.  Further, its use of funda-
mental representation and expert parsers provides an
example for automating other scientific and engineering
tasks, such as design.  As detailed in our discussion
section, if this procedure is to achieve its full potential,
we must tackle problems that fall into three categories:
•  Develop the procedure's infrastructure:  array struc-

ture, logical expressions, subroutine calls
•  Extend discipline detail by adding physical, mathe-

matical, and geometrical rules
•  Improve generality, utility, and economy

Acknowledgments

The lexical analysis routines and FORTRAN grammar
are from ftnchek13.  The GUI routines use Tcl/Tk14.
This work was supported by the NASA High Perform-
ance Computing and Communications program through
the Computing and Interdisciplinary Systems Office
(contract NAS3-98008) at NASA Glenn Research
Center. Greg Follen, Joe Veres, and Karl Owen were
the monitors.  The authors thank Ambady Suresh for
helpful discussions about this work.

Bibliography

1 W. Y. Crutchfield and M. L. Welcome, “Object
Oriented Implementation of Adaptive Mesh Refinement
Algorithms," Scientific Programming 2 (1993) 2, 145-
156.
2 E. Kant, “Synthesis of Mathematical Modeling
Software," IEEE Software, May 1993.
3J. Woodcock and M. Loomes, Software Engineering
Mathematics (Pitman, London, 1988).
4M. R. Cutkosky, R. S. Engelmore, R. E. Fikes, et. al.,
“PACT: An Experiment in Integrating Concurrent
Engineering Systems," IEEE Computer, Jan. 1993.
5J. Allen, Natural Language Understanding (Benja-
min/Cummings, Menlo Park, 1987).
6 M. E. M. Stewart, “A Semantic Analysis Method for
Scientific and Engineering Code,'' NASA CR 207402,
April 1998.
7A.V. Aho, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools (Addison-Wesley,
Reading, 1986).
8S. C. Johnson, “Yacc--Yet Another Compiler-
Compiler,” Comp. Sci. Tech. Rep. No. 32. (AT&T Bell
Laboratories, Murray Hill, 1977).
9J. R. Levin, T. Mason, and D. Brown, Lex and Yacc
(O’Reilly, Sebastopol, 1992).
10J.-S. Shuen, K.-H. Chen, and Y. Choi, “A Coupled
Implicit Method for Chemical Non-equilibrium Flows
at All Speeds,”  J. of Comp. Phys., 106, No. 2, 306,
1993.
11M. E. M. Stewart, “Axisymmetric Aerodynamic
Numerical Analysis of a Turbofan Engine,” ASME
Paper 95-GT-338, 1995.
12E. Hall, N. J. Heidegger, and R. A. Delaney, “ADPAC
v 1.0 – User’s Manual,” NASA CR 1999-206600, Feb.
1999.
13R. K. Moniot, “ftnchek” http://www.dsm.fordham.
edu/~ftnchek (Fordham University, New York, 1989).
14J. K. Ousterhout, Tcl and the Tk Toolkit (Addison-
Wesley, Reading, 1994).

http://www.dsm.fordham.edu/~ftnchek
http://www.dsm.fordham.edu/~ftnchek

	AIAA-99-3276
	AN EXPERIMENT IN AUTOMATED, SCIENTIFIC-CODE SEMANTIC ANALYSIS
	
	Abstract
	Introduction
	Thesis
	Procedure
	
	Extended Example of Parsing for Code Recognition
	
	Physical




	Properties of the Procedure
	Results
	
	
	Recognition of Code Semantics

	Generality of Recognition Capability


	Discussion
	Conclusions

	Acknowledgments
	Bibliography



